Problem A: Find all nonnegative integers n such there are integers a and b with the property

 $n^2 = a + b$ and $n^3 = a^2 + b^2$.

Answer: Suppose that n has the required property as witnessed by integers a, b. Note that

$$(a+b)^2 \le (a+b)^2 + (a-b)^2 = 2(a^2+b^2)$$

and hence $(n^2)^2 \leq 2n^3$. Hence necessarily $n \leq 2$. Now we easily verify that

- n = 0 has the required property as witnessed by a = b = 0,
- n = 1 has the required property as witnessed by a = 1 and b = 0,
- n = 2 has the required property as witnessed by a = b = 2.

Consequently, the only integers with the property described in our problem are 0, 1, 2.

Correct solution was received from :

(1)	Melissa Riley	POW 6A: \heartsuit
(2)	Brad Tuttle	POW 6A: \heartsuit

Problem B: Find all primes p such that $p^2 + 11$ has exactly six different divisors (including 1 and the number itself).

Answer: First note that for any prime p the product (p-1)p(p+1) is divisible by 3 and hence if $p \neq 3$ then $3|(p^2-1)$. Consequently $3|(p^2+11)$ for all primes $p \neq 3$.

Also, if $p \neq 2$ then both p-1 and p+1 are even and $4|(p^2-1)$. Consequently $4|(p^2+11)$ for all primes $p \neq 2$.

Therefore, if the prime p is larger then 3, then $12|(p^2+11)$. Since 12 itself has six divisors (1, 2, 3, 4, 6, 12) and $p^2 + 11 > 12$ (for p > 3) we conclude that $p^2 + 11$ must have more than 6 divisors. Now we easily verify that

- if p = 2 then $p^2 + 11 = 15$ has exactly four divisors (1, 3, 5, 15), and
- if p = 3 then $p^2 + 11 = 20$ has exactly six divisors (1, 2, 4, 5, 10, 20).

Consequently, the only prime number p such that $p^2 + 11$ has exactly six different divisors is p = 3.

CORRECT SOLUTION WAS RECEIVED FROM :

(1) BRAD TUTTLE

 $\mathbf{2}$